Tag Archives: cnc pulley

China manufacturer Bearing CNC Machining 3D Printer Timing Pulley Idler Pulley 40t Inner Hole 5mm with Bearing supplier

Product Description


Market Revenue(Previous Year) Total Revenue (%)
North America Confidential 10
South America Confidential 30
Eastern Europe Confidential 35
Southeast Asia Confidential 5
Africa Confidential 1
Oceania Confidential 1
Mid East Confidential 1
Eastern Asia Confidential 1
Western Europe Confidential 12
Central America Confidential 1
Northern Europe Confidential 1
Southern Europe Confidential 1
South Asia Confidential 1
Domestic Market Confidential 0

Testing Machinery:

Machine Name Brand & Model No. Quantity Number of Year(s) Used Condition

Short lead time:

Products Name Order(in the last 12month) Shortest Lead Time
Taper Roller Bearing Confidential Confidential
Deep Groove Ball Bearing Confidential Confidential
Cylindrical Roller Bearing Confidential Confidential
Pillow Block Bearing Confidential Confidential
Spherical Roller Bearing Confidential Confidential


Company Profile





Packaging & Shipping

You now have 3 measuring elements that will allow you to identify your bearing: the inside diameter (or bore), the outside diameter, and the thickness.

You can postpone these measurements in our bearing search tool on our




1.How many is the MOQ of your company?
   Our company MOQ is 1pcs.

2.Could you accept OEM and customize?
   YES, OEM is accepted and we can customize for you according to sample or drawing. 


3.How do you guaranee the quality?
Evaluate the samples and drawings before production
Eva;iate the production process,and following it in schedual,guarantee the delievery time in time.
Evaluate the bearing dimension,clearance,noise,rotations of final productions.
Evaluate the fause products,block it and make an improve action.


4.Do you have stocks?
   YES, we have most of the bearings showing on made in china in stock,please contact us for order details.


5.Do you have only Hubs Wheel Auto Bearing?

    YES,we have more others types bearings,ANY BEARING YOU CAN THINK OF NOW,WE HAVE!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Customized: Customized
Standard Parts: Yes
Universal: Yes
Type: Bearing Roller
Material: Stainless Steel
Precision Rating: P0 P6 P5 P4 P2
US$ 1/Piece
1 Piece(Min.Order)

Request Sample



Customized Request

timing pulley

How do timing pulley systems ensure synchronized motion?

Timing pulley systems play a crucial role in ensuring synchronized motion in various mechanical systems. Here’s how timing pulley systems achieve synchronized motion:

1. Toothed Design:

Timing pulleys have teeth or grooves on their periphery that mesh with the teeth on the timing belt or chain. The toothed design creates positive engagement between the pulley and the belt or chain, preventing slippage and maintaining precise synchronization.

2. Timing Belts or Chains:

The timing pulley system works in conjunction with a timing belt or chain. The teeth on the belt or chain interlock with the teeth on the pulley, ensuring that the rotational motion is transferred accurately from the driving pulley to the driven pulley. The precise engagement of the teeth allows for synchronized motion between the pulleys.

3. Constant Pitch:

The teeth on the timing belt or chain and the corresponding teeth on the timing pulleys have a consistent pitch. The pitch refers to the distance between the teeth, and it remains constant throughout the length of the belt or chain. This constant pitch ensures that the teeth on the belt or chain engage with the pulley teeth at the same rate, maintaining synchronized motion.

4. Precise Manufacturing Tolerances:

Timing pulley systems are manufactured with tight tolerances to ensure accurate tooth profiles and consistent dimensions. The teeth on the pulleys and the teeth on the belt or chain are designed to match precisely, allowing for seamless interaction and precise synchronization. High manufacturing tolerances contribute to the reliability and efficiency of the system.

5. Tension Control:

Proper tension control is vital for achieving synchronized motion in a timing pulley system. The tension in the timing belt or chain needs to be adjusted correctly to ensure optimal engagement with the pulleys. Tensioners and idler pulleys are often used to maintain the appropriate tension, ensuring that the belt or chain remains securely engaged with the pulleys.

6. Suitable Pulley and Belt/Chain Selection:

Choosing the appropriate combination of timing pulleys and timing belts or chains is crucial for achieving synchronized motion. Factors such as pulley diameter, number of teeth, belt or chain pitch, and material selection need to be considered to match the specific requirements of the application. Proper selection ensures that the pulley system operates with accurate timing and synchronized motion.

7. Regular Maintenance and Inspection:

To ensure continued synchronized motion, regular maintenance and inspection of the timing pulley system are necessary. This includes checking for wear, proper tension, and alignment, and replacing any worn-out components. Routine maintenance helps identify and address potential issues that could affect the synchronized motion of the system.

By incorporating toothed design, timing belts or chains, constant pitch, precise manufacturing tolerances, tension control, suitable pulley and belt/chain selection, and regular maintenance, timing pulley systems ensure synchronized motion in mechanical systems. This synchronization is essential for accurate timing, coordination, and efficient operation of various applications.

timing pulley

How do timing pulleys contribute to precision and accuracy in machinery?

Timing pulleys play a significant role in enhancing precision and accuracy in machinery. Here’s an explanation of how timing pulleys contribute to precision and accuracy:

1. Synchronization of Components:

Timing pulleys ensure precise synchronization of different components in a machinery system. By using toothed timing belts or chains that mesh with the teeth on the pulleys, rotational motion can be accurately transferred from one pulley to another. This synchronization is vital for applications where precise coordination is essential, such as in robotics, printing presses, and conveyor systems.

2. Accurate Timing:

Timing pulleys, in combination with timing belts or chains, enable precise timing of operations in machinery. The teeth on the belt or chain engage with the teeth on the pulley, allowing for accurate positioning and control of the driven components. This accuracy in timing ensures that specific actions or tasks occur at the desired intervals, resulting in precise operation and improved overall performance.

3. Consistent Speed and Motion:

Timing pulleys contribute to maintaining consistent speed and motion in machinery. The teeth on the timing belt or chain engage with the teeth on the pulley, preventing slippage and maintaining a constant speed ratio between the driving and driven pulleys. This consistency in speed and motion is crucial for applications that require uniform movement, such as in CNC machines or automated assembly lines.

4. Reduced Backlash:

Timing pulleys help minimize backlash, which refers to the slight movement or play that can occur when there is a change in the direction of motion. The positive engagement between the teeth on the timing belt or chain and the pulley teeth reduces backlash, ensuring that there is minimal or no lost motion. This reduction in backlash contributes to improved precision and accuracy in the machinery.

5. Repeatable Performance:

Timing pulleys enable repeatable performance in machinery. The precise engagement between the teeth on the belt or chain and the pulley ensures that the same motion or action is replicated consistently. This repeatability is essential in applications that require consistent and accurate results, such as in automated manufacturing processes or precision measuring equipment.

6. Tolerance for High Loads:

Timing pulleys are designed to handle high loads while maintaining precision and accuracy. The toothed design and robust construction of timing pulleys allow them to transmit power effectively, even under heavy loads. This capability to withstand high loads without compromising precision ensures reliable performance in demanding applications.

7. Compatibility with Automation and Control Systems:

The precise and accurate nature of timing pulleys makes them compatible with automation and control systems. They can be easily integrated into computerized control systems, allowing for precise positioning and control of machinery components. This integration enhances the overall precision and accuracy of the system.

In summary, timing pulleys contribute to precision and accuracy in machinery by enabling synchronization of components, accurate timing, consistent speed and motion, reduced backlash, repeatable performance, tolerance for high loads, and compatibility with automation and control systems. These characteristics make timing pulleys a fundamental component in achieving precise and accurate operation in various mechanical systems.

timing pulley

What is a timing pulley, and how is it used in mechanical systems?

A timing pulley, also known as a synchronous pulley, is a type of pulley specifically designed to work with toothed belts or timing belts. It features grooves or teeth on its circumferential surface that mesh with corresponding teeth on the belt. Timing pulleys are used in mechanical systems that require precise and synchronized power transmission, where accurate timing and positioning are crucial. Here’s an explanation of the role and usage of timing pulleys in mechanical systems:

1. Power Transmission:

The primary function of a timing pulley is to transmit rotational motion and power between two or more shafts in a mechanical system. The teeth on the pulley engage with the teeth on the timing belt, creating a positive drive system. This positive engagement ensures that the pulley and the belt move together without slipping, providing accurate timing and power transfer.

2. Synchronization:

Timing pulleys are used to synchronize the rotation of different components in a mechanical system. By using matching timing belts and pulleys, the rotational motion of the driving pulley is transferred precisely to the driven pulleys. This synchronization is critical in applications that require accurate timing, such as in engines, printers, CNC machines, and robotics.

3. Speed and Torque Control:

Timing pulleys allow for control over the speed and torque in mechanical systems. By varying the diameter or the number of teeth on the pulleys, different speed ratios can be achieved between the driving and driven shafts. This feature enables the adjustment of rotational speed and torque according to the specific requirements of the application.

4. Positioning and Indexing:

Timing pulleys are often used for precise positioning and indexing of components in mechanical systems. The teeth on the pulley and the timing belt ensure accurate movement and positioning of parts, allowing for repeatable and controlled motion. This makes timing pulleys suitable for applications such as automated assembly lines, 3D printers, and precision motion control systems.

5. Low Maintenance:

Timing pulleys and belts require minimal maintenance due to their design. The toothed profile prevents slippage and eliminates the need for constant tension adjustments. Additionally, they operate with minimal noise and vibration, reducing the wear and tear on the system and increasing its overall reliability.

6. Variations and Configurations:

Timing pulleys are available in various sizes, materials, and configurations to suit different applications. They can be made from materials such as aluminum, steel, or plastic, depending on the requirements of the system. Furthermore, timing pulleys can have different tooth profiles, pitch sizes, and numbers of teeth, allowing for customization based on the specific power transmission needs.

In summary, timing pulleys are specialized pulleys used in mechanical systems to provide precise and synchronized power transmission, accurate timing and positioning, speed and torque control, and low-maintenance operation. Their use is prevalent in applications that require reliable and controlled motion, such as engines, robotics, CNC machines, and automated systems.

China manufacturer Bearing CNC Machining 3D Printer Timing Pulley Idler Pulley 40t Inner Hole 5mm with Bearing   supplier China manufacturer Bearing CNC Machining 3D Printer Timing Pulley Idler Pulley 40t Inner Hole 5mm with Bearing   supplier
editor by CX