China wholesaler Expansion Sleeve Timing Pulley for Automotive Transmission crankshaft pulley

Product Description

Product Description

A timing pulley is a wheel component used for transmission, which is often used in combination with a timing belt or a synchronous chain to achieve precision synchronous transmission. The timing pulley usually consists of 2 parts: the wheel flange and the hub. The wheel flange usually has a toothed structure that can be combined with a timing belt or chain to achieve a precise synchronous transmission effect. Synchronous wheels can be divided into 2 categories: grinding gear synchronous wheels and forged tooth synchronous wheels.

 

Product Parameters

 

product Expansion Sleeve Timing Pulley for Automotive transmission
material stainless steel , iron , aluminum ,bronze ,carbon steel ,brass etc .
size ISO standard  ,customer requirements
BORE Finished bore, Pilot Bore, Special request
surface treatment Carburizing and Quenching,Tempering ,Tooth suface high quenching Hardening,Tempering
Processing Method Molding, Shaving, Hobbing, Drilling, Tapping, Reaming, Manual Chamfering, Grinding etc
Heat Treatment Quenching & Tempering, Carburizing & Quenching, High-frequency Hardening, Carbonitriding……
Package Wooden Case/Container and pallet, or made-to-order
Certificate ISO9001 ,SGS
Machining Process Gear Hobbing, Gear Milling, Gear Shaping, Gear Broaching, Gear Shaving, Gear Grinding and Gear Lapping
Applications Toy, Automotive, instrument, electrical equipment, household appliances, furniture, mechanical equipment,daily living equipment, electronic sports equipment, , sanitation machinery, market/ hotel equipment supplies, etc.
Testing Equipment Rockwell hardness tester 500RA, Double mesh instrument HD-200B & 3102,Gear measurement center instrument CNC3906T and other High precision detection equipments

 

workshop & equipment

 

 

 

 

Production process

 

Certifications

 

 

Our Advantages

 

1  . Prioritized Quality          
2  .Integrity-based Management
3  .Service Orientation
4  .150+  advanced equipment
5  .10000+  square meter  factory area
6  .200+ outstanding employees  
7  .90% employees have more than 10 year- working   experience in our factory
8  .36 technical staff
9  .certificate  ISO 9001 , SGS

10  . Customization support

11 .Excellent after-sales service

 

 

shipping

 

 

sample orders delivery time:
10-15 working days  as usual
15-20 working days  in busy season

large order leading time :
20-30 working days as usual
30-40 working days  in busy season

FAQ

1. why should you buy products from us not from other suppliers?
We are a 32 year-experience manufacturer on making the gear, specializing in manufacturing varieties of gears, such as helical gear ,bevel gear ,spur gear and grinding gear, gear shaft, timing pulley, rack, , timing pulley and other transmission parts . There are 150+ advanced equipment ,200+ excellent employees ,and 36 technical staff . what’s more ,we have got ISO9001 and SGS certificate .

2: What are the common types of tooth profiles for synchronous belt pulleys?

A: The most common tooth profiles for synchronous belt pulleys are the trapezoidal (or T-type) and curvilinear (or HTD-type) profiles. The tooth profile determines the pitch diameter, which affects the overall ratio of the gear drive.

3 .How long is the delivery?
A: Small orders usually takes 10-15 working days,big order usually 20-35 days, depending on orders quantity and whether are standard size.

 

Certification: ISO
Pulley Sizes: Type F
Manufacturing Process: Forging
Material: Stainless Steel
Surface Treatment: Electroplating
Application: Chemical Industry, Grain Transport, Mining Transport, Power Plant
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

timing pulley

Can timing pulleys be customized for specific applications?

Yes, timing pulleys can be customized to suit specific applications and requirements. Here’s how timing pulleys can be customized:

1. Size and Dimensions:

Timing pulleys can be customized in terms of their size and dimensions to fit specific shaft diameters, spacing, and clearance requirements. Customization allows engineers to ensure proper alignment and integration of the pulley within the system.

2. Tooth Profile:

The tooth profile of a timing pulley can be customized based on the specific power transmission needs of the application. Different tooth profiles, such as trapezoidal, curvilinear, or modified curvilinear, offer varying levels of engagement, load capacity, and noise characteristics. Customizing the tooth profile allows for optimized performance and efficiency.

3. Material Selection:

Timing pulleys can be customized by selecting the appropriate material based on the application’s requirements. Different materials, such as steel, aluminum, plastic, or composites, offer varying levels of strength, durability, corrosion resistance, and temperature tolerance. Customizing the material ensures compatibility with the operating conditions and environment.

4. Coatings and Surface Treatments:

Custom coatings and surface treatments can be applied to timing pulleys to enhance their performance and longevity. These treatments include but are not limited to hard anodizing, zinc plating, nitriding, or specific coatings for reduced friction, wear resistance, or improved tooth engagement.

5. Flanges and Attachments:

Timing pulleys can be customized with flanges or attachments to facilitate proper belt tracking, prevent belt slippage, or accommodate specific mounting requirements. These additions help ensure reliable and stable power transmission in the application.

6. Keyways and Hubs:

Custom keyways and hubs can be incorporated into timing pulleys to provide precise shaft-to-pulley connection and prevent slippage or misalignment. Keyways and hubs allow for secure and accurate power transmission in applications that require high torque or precise positioning.

7. Prototype and Low-Volume Production:

Timing pulleys can be customized through prototyping and low-volume production processes. This allows for the creation of unique designs, iterations, and testing before full-scale production. Customization at these stages ensures that the final timing pulleys meet the specific requirements of the application.

By offering customization options, timing pulley manufacturers and suppliers can cater to a wide range of industries and applications, including automotive, aerospace, robotics, industrial automation, medical, and more. Customized timing pulleys provide engineers with the flexibility to design systems that meet precise power transmission needs, resulting in optimized performance, reliability, and efficiency.

timing pulley

How do timing pulleys impact the performance of 3D printers?

Timing pulleys play a significant role in determining the performance and accuracy of 3D printers. Here’s an explanation of how timing pulleys impact the performance of 3D printers:

1. Motion Control:

Timing pulleys, in conjunction with belts or chains, are used to control the movement of the print head and build platform in 3D printers. The motor drives the driving pulley, which is connected to the print head or build platform through a timing belt or chain. The driven pulley on the print head or build platform receives the rotational motion from the driving pulley, resulting in precise and synchronized movement. The accuracy and quality of the printed object depend on the precise control and synchronization facilitated by the timing pulleys.

2. Positioning Accuracy:

Timing pulleys contribute to the positioning accuracy of 3D printers. The teeth on the timing belt or chain mesh with the teeth on the pulleys, creating positive engagement. This ensures that the print head or build platform moves precisely according to the instructions from the control system. The accuracy of the timing pulley system directly affects the dimensional accuracy and surface finish of the printed object.

3. Speed and Acceleration:

Timing pulleys allow for control of the speed and acceleration of the print head and build platform in 3D printers. By varying the diameter or the number of teeth on the pulleys, different gear ratios can be achieved. This enables printers to control the speed and acceleration of the print head or build platform, affecting printing time, print quality, and the ability to handle intricate details and complex geometries.

4. Print Resolution:

The resolution of a 3D printer refers to the smallest feature size that can be accurately reproduced. Timing pulleys play a role in determining the achievable print resolution. The finer the pitch and the more teeth per unit length on the timing belt or chain, the higher the resolution that can be achieved. Timing pulleys with smaller teeth allow for finer positioning and more precise movement, enabling the printer to produce objects with intricate details and smooth surfaces.

5. Noise and Vibration:

Properly designed and maintained timing pulley systems contribute to reducing noise and vibration in 3D printers. Well-aligned and tensioned timing belts or chains, along with accurately machined pulleys, minimize backlash and ensure smooth and quiet operation. This is particularly important during rapid movements and changes in direction, as excessive noise and vibration can affect print quality and overall printer performance.

6. Maintenance and Durability:

The durability and maintenance requirements of the timing pulley system impact the overall performance of 3D printers. High-quality timing pulleys and belts or chains are essential to ensure longevity and reliable operation. Regular inspection, tensioning, and replacement of worn or damaged components are necessary to maintain optimal performance and prevent print quality issues caused by a degraded timing pulley system.

7. Extruder and Filament Control:

In addition to controlling the movement of the print head and build platform, timing pulleys may also be used in the extruder assembly of 3D printers. Timing pulleys help drive the filament feeding mechanism, ensuring consistent and controlled extrusion of the filament during the printing process. The accurate and synchronized movement facilitated by the timing pulleys contributes to maintaining filament tension and preventing issues such as under-extrusion or filament jams.

By understanding the impact of timing pulleys on 3D printer performance, manufacturers and users can optimize the design, calibration, and maintenance of the timing pulley systems to achieve accurate, reliable, and high-quality 3D prints.

timing pulley

What are the key components of a timing pulley system?

A timing pulley system consists of several key components that work together to provide precise power transmission and motion control. These components include:

1. Timing Pulley:

The timing pulley is the central component of the system. It is a toothed pulley with grooves or teeth on its circumferential surface that mesh with the teeth on the timing belt. The timing pulley transfers rotational motion and power between the driving and driven shafts, ensuring accurate timing and synchronization.

2. Timing Belt:

The timing belt is a toothed belt that runs around the timing pulleys. It has teeth that mesh with the teeth on the timing pulley, creating a positive drive system. The timing belt transmits power from the driving pulley to the driven pulleys while maintaining precise timing and synchronization. Timing belts are typically made of rubber or polymer materials with reinforcing cords for strength.

3. Tensioner:

A tensioner is used to maintain proper tension in the timing belt. It applies tension to the timing belt to prevent slack or excessive tightness, ensuring optimal power transmission and preventing belt skipping or jumping teeth. Tensioners can be spring-loaded or adjustable, depending on the specific system requirements.

4. Idler Pulley:

An idler pulley is an additional pulley used to guide the timing belt and change its direction. It helps to maintain the proper tension and alignment of the timing belt as it wraps around the pulleys. Idler pulleys are typically used in systems with complex routing or when additional support is needed to prevent belt vibration or noise.

5. Shaft or Axle:

The shaft or axle serves as the support for the timing pulleys and allows them to rotate. It is usually connected to a driving source, such as a motor or engine, to provide rotational motion. The shaft or axle needs to be properly aligned and secured to ensure smooth and accurate power transmission.

6. Mounting Hardware:

Mounting hardware includes bolts, screws, or fasteners used to secure the timing pulleys, tensioner, idler pulleys, and other components to their respective locations. The mounting hardware ensures proper alignment and stability of the timing pulley system.

7. Covers and Guards:

In some applications, timing pulley systems may be enclosed with covers or guards for protection. These covers prevent dust, debris, or contaminants from entering the system, which could affect the performance and lifespan of the timing belt and pulleys. Covers and guards also provide a safety barrier, preventing accidental contact with moving parts.

Each of these components plays a crucial role in a timing pulley system, working together to achieve accurate power transmission, precise timing, and synchronization. Proper installation, alignment, and maintenance of these components are essential for the reliable and efficient operation of the timing pulley system.

China wholesaler Expansion Sleeve Timing Pulley for Automotive Transmission   crankshaft pulley	China wholesaler Expansion Sleeve Timing Pulley for Automotive Transmission   crankshaft pulley
editor by CX