Tag Archives: pulleys

China Best Sales Metric Pitch Imperial Pitch Timing Belt Pulleys pulley band

Product Description

CHINAMFG Machinery offers a wide range of high quality Timing Belt Pulleys and Toothed Bars/ Timing Bars. Standard and non-standard pulleys according to drawings are available.

 
Types of material:
  1.  AlCuMgPb 6061 6082 Aluminum Timing Pulley
  2.  C45E 1045 S45C Carbon Steel Timing Pulley
  3.  GG25 HT250 Cast Iron Timing Pulley
  4.  SUS303 SUS304 AISI431 Stainless Steel Timing Pulley
  5.  Other material on demand, such as cooper,  bronze and plastic
 
Types of surface treatment
 1.   Anodized surface -Aluminum Pulleys
 2.   Hard anodized surface — Aluminum Pulleys
 3.   Black Oxidized surface — Steel Pulleys
 4.  Zinc plated surface — Steel Pulleys
 5.  Chromate surface — Steel Pulleys; Cast Iron Pulleys
 6.  Nickel plated surface –Steel Pulleys; Cast Iron Pulleys
 
Types of teeth profile

Teeth Profile Pitch
HTD 3M,5M,8M,14M,20M
AT AT5,AT10,AT20
T T2.5,T5,T10
MXL 0.08″(2.032MM)
XL 1/5″(5.08MM)
L 3/8″(9.525MM)
H 1/2″(12.7MM)
XH 7/8″(22.225MM)
XXH 1 1/4″(31.75MM)
STS STPD S2M,S3M,S4.5M,S5M,S8M,S14M
RPP RPP5M,RPP8M,RPP14M,RPP20M
PGGT PGGT  2GT, 3GT and 5GT
PCGT GT8M,GT14M

 
Types of pitches and sizes

Imperial Inch Timing Belt Pulley,
1.     Pilot Bore MXL571 for 6.35mm timing belt; teeth number from 16 to 72;
2.  Pilot Bore XL037 for 9.53mm timing belt; teeth number from 10 to 72;
3.  Pilot Bore, Taper Bore L050 for 12.7mm timing belt; teeth number from 10 to 120;
4.  Pilot Bore, Taper Bore L075 for 19.05mm timing belt; teeth number from 10 to 120;
5.  Pilot Bore, Taper Bore L100 for 25.4mm timing belt; teeth number from 10 to 120;
6.  Pilot Bore, Taper Bore H075 for 19.05mm timing belt; teeth number from 14 to 50;
7.  Pilot Bore, Taper Bore H100 for 25.4mm timing belt; teeth number from 14 to 156;
8.  Pilot Bore, Taper Bore H150 for 38.1mm timing belt; teeth number from 14 to 156;
9.  Pilot Bore, Taper Bore H200 for 50.8mm timing belt; teeth number from 14 to 156;
10.  Pilot Bore, Taper Bore H300 for 76.2mm timing belt; teeth number from 14 to 156;
11.  Taper Bore XH200 for 50.8mm timing belt; teeth number from 18 to 120;
12.  Taper Bore XH300 for 76.2mm timing belt; teeth number from 18 to 120;
13.  Taper Bore XH400 for 101.6mm timing belt; teeth number from 18 to 120;

Metric Timing Belt Pulley T and AT
1.  Pilot Bore T2.5-16 for 6mm timing belt; teeth number from 12 to 60; 
2.   Pilot Bore T5-21 for 10mm timing belt; teeth number from 10 to 60; 
3.   Pilot Bore T5-27 for 16mm timing belt; teeth number from 10 to 60; 
4.   Pilot Bore T5-36 for 25mm timing belt; teeth number from 10 to 60; 
5.   Pilot Bore T10-31 for 16mm timing belt; teeth number from 12 to 60; 
6.   Pilot Bore T10-40 for 25mm timing belt; teeth number from 12 to 60; 
7.   Pilot Bore T10-47 for 32mm timing belt; teeth number from 18 to 60; 
8.   Pilot Bore T10-66 for 50mm timing belt; teeth number from 18 to 60;
9.  Pilot Bore AT5-21 for 10mm timing belt; teeth number from 12 to 60;
10. Pilot Bore AT5-27 for 16mm timing belt; teeth number from 12 to 60;
11. Pilot Bore AT5-36 for 25mm timing belt; teeth number from 12 to 60; 
12. Pilot Bore AT10-31 for 16mm timing belt; teeth number from 15 to 60; 
13. Pilot Bore AT10-40 for 25mm timing belt; teeth number from 15 to 60; 
14. Pilot Bore AT10-47 for 32mm timing belt; teeth number from 18 to 60; 
15. Pilot Bore AT10-66 for 50mm timing belt; teeth number from 18 to 60;
  
Metric Timing Belt Pulley HTD3M, 5M, 8M, 14M 
1.  HTD3M-06; 3M-09; 3M-15; teeth number from 10 to 72; 
2.  HTD5M-09; 5M-15; 5M-25; teeth number from 12 to 72; 
3.  HTD8M-20; 8M-30; 8M-50; 8M-85 teeth number from 22 to 192; 
4.  HTD14M-40; 14M-55; 14M-85; 14M-115; 14M-170; teeth number from 28-216; 
5.  Taper Bore HTD5M-15; 8M-20; 8M-30; 8M-50; 8M-85; 14M-40; 14M-55; 14M-85;
         14M-115; 14M-170

Metric Timing Belt Pulleys for Poly Chain GT2 Belts 
1.      PCGT8M-12; PCGT8M-21; PCGT8M-36; PCGT8M-62; 
2.      PCGT14M-20; PCGT14M-37; PCGT14M-68; PCGT14M-90; PCGT14M-125;

Power Grip CHINAMFG Tooth/ PGGT 2GT, 3GT and 5GT 
1. 2GT-06, 2GT-09 for timing belt width 6mm and 9mm 
2. 3GT-09, 3GT-15 for timing belt width 9mm and 15mm 
3. 5GT-15, 5GT-25 for timing belt width 15mm and 25mm

OMEGA RPP HTD Timing Pulleys 
1.   RPP3M-06; 3M-09; 3M-15; teeth number from 10 to 72; 
2.   RPP5M-09; 5M-15; 5M-25; teeth number from 12 to 72; 
3.   RPP8M-20; 8M-30; 8M-50; 8M-85 teeth number from 22 to 192; 
4.   RPP14M-40; 14M-55; 14M-85; 14M-115; 14M-170; teeth number from 28-216; 
5.  Taper Bore RPP5M-15; 8M-20; 8M-30; 8M-50; 8M-85; 14M-40; 14M-55; 14M-85;
     14M-115; 14M-170

Ubet Machinery is also competetive on these power transmission components.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO
Pulley Sizes: Timing
Manufacturing Process: Sawing
Samples:
US$ 4/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

timing pulley

How do timing pulley systems ensure synchronized motion?

Timing pulley systems play a crucial role in ensuring synchronized motion in various mechanical systems. Here’s how timing pulley systems achieve synchronized motion:

1. Toothed Design:

Timing pulleys have teeth or grooves on their periphery that mesh with the teeth on the timing belt or chain. The toothed design creates positive engagement between the pulley and the belt or chain, preventing slippage and maintaining precise synchronization.

2. Timing Belts or Chains:

The timing pulley system works in conjunction with a timing belt or chain. The teeth on the belt or chain interlock with the teeth on the pulley, ensuring that the rotational motion is transferred accurately from the driving pulley to the driven pulley. The precise engagement of the teeth allows for synchronized motion between the pulleys.

3. Constant Pitch:

The teeth on the timing belt or chain and the corresponding teeth on the timing pulleys have a consistent pitch. The pitch refers to the distance between the teeth, and it remains constant throughout the length of the belt or chain. This constant pitch ensures that the teeth on the belt or chain engage with the pulley teeth at the same rate, maintaining synchronized motion.

4. Precise Manufacturing Tolerances:

Timing pulley systems are manufactured with tight tolerances to ensure accurate tooth profiles and consistent dimensions. The teeth on the pulleys and the teeth on the belt or chain are designed to match precisely, allowing for seamless interaction and precise synchronization. High manufacturing tolerances contribute to the reliability and efficiency of the system.

5. Tension Control:

Proper tension control is vital for achieving synchronized motion in a timing pulley system. The tension in the timing belt or chain needs to be adjusted correctly to ensure optimal engagement with the pulleys. Tensioners and idler pulleys are often used to maintain the appropriate tension, ensuring that the belt or chain remains securely engaged with the pulleys.

6. Suitable Pulley and Belt/Chain Selection:

Choosing the appropriate combination of timing pulleys and timing belts or chains is crucial for achieving synchronized motion. Factors such as pulley diameter, number of teeth, belt or chain pitch, and material selection need to be considered to match the specific requirements of the application. Proper selection ensures that the pulley system operates with accurate timing and synchronized motion.

7. Regular Maintenance and Inspection:

To ensure continued synchronized motion, regular maintenance and inspection of the timing pulley system are necessary. This includes checking for wear, proper tension, and alignment, and replacing any worn-out components. Routine maintenance helps identify and address potential issues that could affect the synchronized motion of the system.

By incorporating toothed design, timing belts or chains, constant pitch, precise manufacturing tolerances, tension control, suitable pulley and belt/chain selection, and regular maintenance, timing pulley systems ensure synchronized motion in mechanical systems. This synchronization is essential for accurate timing, coordination, and efficient operation of various applications.

timing pulley

What safety considerations should be kept in mind when working with timing pulleys?

Working with timing pulleys requires careful attention to safety to prevent accidents and injuries. Here are some essential safety considerations to keep in mind:

1. Proper Training:

Ensure that individuals working with timing pulleys have received proper training on their safe handling and operation. Training should cover topics such as correct installation procedures, maintenance guidelines, and understanding the risks associated with timing pulley systems.

2. Personal Protective Equipment (PPE):

Wear appropriate personal protective equipment, including safety glasses, gloves, and any other required protective gear when working with timing pulleys. PPE helps protect against potential hazards such as flying debris, sharp edges, or accidental contact with moving parts.

3. Lockout/Tagout Procedures:

Follow established lockout/tagout procedures when performing maintenance or repair tasks on machinery equipped with timing pulleys. Lockout/tagout procedures involve isolating the power source, de-energizing the system, and securing it with a lock or tag to prevent unexpected startup or energization.

4. Machine Guarding:

Ensure that timing pulleys are properly guarded to prevent accidental contact. Install appropriate machine guards, barriers, or enclosures to prevent fingers, clothing, or other objects from coming into contact with the moving pulleys or belts.

5. Regular Inspection and Maintenance:

Regularly inspect timing pulleys for signs of wear, damage, or misalignment. Replace any worn or damaged components promptly to maintain safe operation. Follow the manufacturer’s recommended maintenance schedule and procedures.

6. Avoid Loose Clothing and Jewelry:

Avoid wearing loose clothing, jewelry, or any other items that could get caught in the timing pulleys or associated machinery. Loose clothing or accessories can pose a significant risk of entanglement or injury.

7. Proper Lifting and Handling:

When handling timing pulleys or related equipment, use proper lifting techniques and equipment to prevent strain or injuries. Seek assistance when dealing with heavy or bulky pulleys.

8. Risk Assessment:

Conduct a thorough risk assessment of the machinery and work environment to identify any additional safety measures that may be required. Consider factors such as noise levels, ventilation, and ergonomics to ensure a safe working environment.

9. Emergency Stop and Shutdown:

Ensure that machinery equipped with timing pulleys has accessible emergency stop buttons or switches. Familiarize yourself with the location and operation of these emergency stop devices and know how to shut down the machinery quickly in case of an emergency.

10. Follow Manufacturer’s Guidelines:

Adhere to the manufacturer’s guidelines, instructions, and warnings specific to the timing pulleys and associated machinery. Manufacturers provide valuable information regarding safe operation, maintenance procedures, and recommended safety precautions.

By following these safety considerations, individuals can minimize the risks associated with working with timing pulleys and promote a safe working environment.

timing pulley

How are timing pulleys utilized in automotive engines?

Timing pulleys play a crucial role in automotive engines, contributing to the precise operation and synchronization of various engine components. Here’s how timing pulleys are utilized in automotive engines:

1. Camshaft Synchronization:

Timing pulleys are commonly employed to synchronize the rotation of the camshaft with the crankshaft in an internal combustion engine. The camshaft controls the opening and closing of the engine’s intake and exhaust valves, while the crankshaft converts the reciprocating motion of the pistons into rotational motion. The timing pulley on the camshaft is connected to the crankshaft via a timing belt or chain, ensuring precise timing and coordination between these two essential engine components.

2. Valve Timing:

Timing pulleys, in conjunction with the camshaft, determine the valve timing in an engine. The precise opening and closing of the intake and exhaust valves at specific moments during the engine’s four-stroke cycle (intake, compression, power, and exhaust) are critical for optimal engine performance. The timing pulleys ensure accurate valve timing, allowing for efficient fuel-air intake, combustion, and exhaust processes.

3. Belt or Chain Drive:

In automotive engines, timing pulleys are used in conjunction with a timing belt or timing chain to transmit power between the crankshaft and the camshaft. The timing belt or chain connects the timing pulleys on these two shafts, allowing for synchronized rotation. The teeth on the timing pulleys engage with the teeth on the timing belt or chain, creating a positive drive system that ensures accurate power transmission without slippage.

4. Tensioner and Idler Pulleys:

Timing pulleys are also utilized in the tensioning system of the timing belt or chain. Tensioner pulleys and idler pulleys, equipped with timing pulleys, help maintain proper tension and alignment of the timing belt or chain. These pulleys apply tension to the belt or chain, ensuring it remains securely in place and properly engaged with the timing pulleys on the crankshaft and camshaft.

5. Overhead Cam (OHC) and Dual Overhead Cam (DOHC) Engines:

Timing pulleys are particularly important in overhead cam (OHC) and dual overhead cam (DOHC) engines, where the camshaft(s) is located in the cylinder head above the valves. In these engine designs, timing pulleys help drive the camshaft(s) and synchronize their rotation with the crankshaft, ensuring precise valve operation and optimal engine performance.

6. Variable Valve Timing Mechanisms:

Timing pulleys are integral to variable valve timing (VVT) mechanisms used in modern automotive engines. VVT systems adjust the timing of the intake and exhaust valves to optimize engine performance, power, and fuel efficiency under different operating conditions. Timing pulleys, combined with hydraulic actuators or electronically controlled mechanisms, enable the adjustment of the camshaft position and timing, allowing for variable valve timing.

7. Engine Performance and Efficiency:

By accurately timing the valve operation and synchronization between the camshaft and crankshaft, timing pulleys contribute to overall engine performance and efficiency. Precise valve timing ensures efficient combustion, improved power delivery, reduced emissions, and better fuel economy. Proper operation of the timing pulleys is essential for the reliable and optimal functioning of automotive engines.

In summary, timing pulleys are essential components in automotive engines, facilitating the synchronization of the camshaft and crankshaft, determining valve timing, enabling power transmission through timing belts or chains, assisting in tensioning systems, and supporting variable valve timing mechanisms. Their precise operation ensures efficient engine performance, power delivery, and fuel economy in various types of automotive engines.

China Best Sales Metric Pitch Imperial Pitch Timing Belt Pulleys   pulley band	China Best Sales Metric Pitch Imperial Pitch Timing Belt Pulleys   pulley band
editor by CX